耐力要素の 強度性能評価書

ホールダウン金物(引張)

(平成 23 年 5 月版)

- ・記載された条件に該当しない場合は適用できません。
- ・適用範囲を確認の上、設計者の判断で使用して下さい。

実 験 :(財)建材試験センター

評価書原案作成:一級建築士事務所木住研

一般社団法人 木を活かす建築推進協議会

1. 接合部名称

ホールダウン金物(引張)

2. 短期許容耐力

ホールダウン金物の短期許容耐力は以下のとおりとする。

寸法型式	短期許容耐力 (kN)	接合部倍率	※参考値 min(Py, 2/3P _{max}) (短期基準耐力) (kN)
HD	120.8	22.8	127. 2

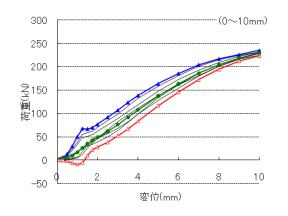
[※]αは、耐力壁や水平構面の構成材料の耐久性・使用環境の影響、施工性の影響等を勘案した低減係数。

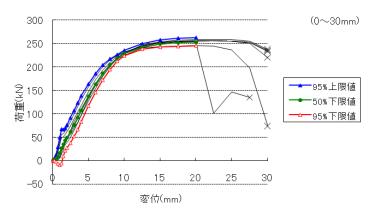
3. 特性値

ホールダウン金物の特性値は以下のとおりとする。

寸法型式	P _y (kN)	δ_y (mm)	2/3P _{max} (kN)	min(P _y , 2/3P _{max}) (基準耐力) (kN)	P _u (kN)	$\delta_{\rm u}$ (mm)	K (kN/mm)	$\delta_{\rm v}$ (mm)	破壊形式 (当該破壊形式の数/ 試験体数)
HD	127. 2	5. 6	163.8	127. 2	231. 7	21. 5	27. 5	8. 7	アンカーホ゛ルトの 破断(5/6)

 P_y 、 $2/3P_{max}$ 、 P_u は信頼水準 75%の 95%下限値で、 δ_y 、K、 δ_v は信頼水準 75%の 50%下限値、 δ_u は最小値。 μ は平均値とした。

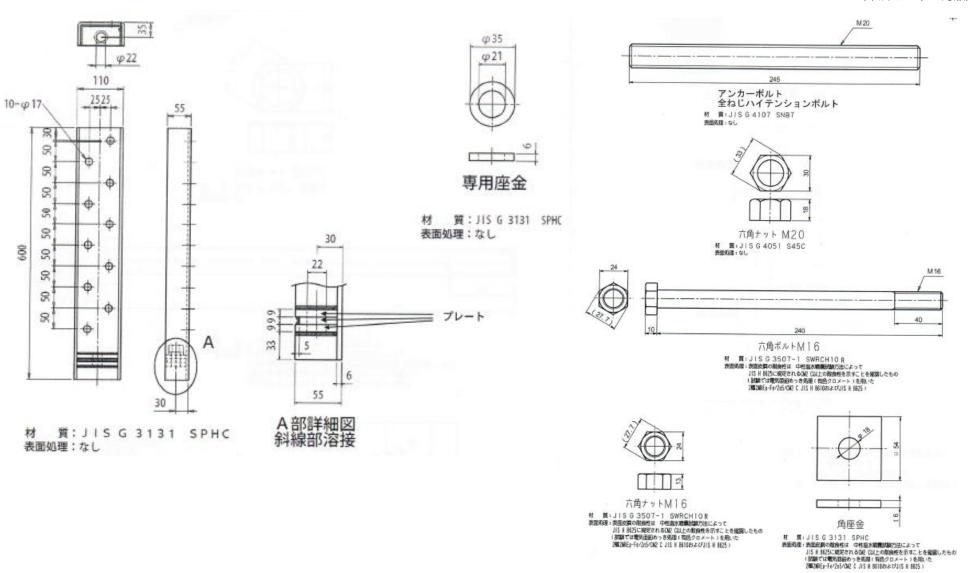

・この値は、低減係数 α を乗じる前の数値である。利用に当たっては、適切に α を考慮する必要がある。


特定変位(mm)時の耐力(kN) (信頼水準 75%の 50%下限値)													
寸法型式/変位 (mm)	0. 1	0. 2	0.3	0.5	0.8	1. 0	1. 3	1. 5	1.8	2.0	2. 5	3. 0	3. 5
HD	1. 1	2.0	2.7	4.9	9.7	16.8	26.6	35. 0	42.8	49. 1	61.4	76. 4	91.8

	特	定変位(mm)時の	耐力(kN)	(信頼水準 75%の 50%下限値)						
寸法型式/変位 (mm)	4.0	5. 0	6.0	7. 0	8. 0	9. 0	10.0	12.5	15. 0	17. 5	20.0
HD	107.7	137.6	163. 5	186. 2	204. 7	218.7	228.9	243. 3	249. 1	251.8	253.0

- ・この値は、低減係数 α を乗じる前の数値である。利用に当たっては、適切に α を考慮する必要がある。
- ・min (Py, $2/3P_{max}$) (短期基準耐力): 許容耐力を決める際の基準とした耐力。まず、各仕様 6 体の試験体の荷重一変形関係を完全弾塑性モデルに置換し、降伏耐力 (Py) および最大耐力の 2/3 の値 ($2/3P_{max}$) を求める。そして、 P_y と $2/3P_{max}$ それぞれについて、6 つの値の平均値と変動係数から、信頼水準 75%の 95%下限値を求め、小さい方の値を基準耐力とした。いずれの仕様についても、 P_y が $2/3P_{max}$ を下回り、 P_y を基準耐力として採用している。なお、 P_y を算出できなかった場合は、 P_y 、Pu および K について、その試験体を除いた数で統計処理を行った。
- ・P.(終局耐力):完全弾塑性モデルにおける終局耐力の信頼水準75%の95%下限値である。
- ・K(初期剛性):この値は、応力解析に使用されることを考慮して、完全弾塑性モデルにおける初期剛性の信頼水準75%の50%下限値とした。
- ・破壊形式:各仕様で最も多かった破壊形式を記載した。破壊形式の後の(a/b)は、当該の仕様の試験体数 b のうち、標記の破壊形式は a 体であったという意味である。
- ・特定変形時の耐力:6 体の試験体の特定変形時における耐力の信頼水準 75%の 50%下限値を示している。6 体のうち、1 体でも破壊して耐力を失った場合は、それ以降の数値は表示していない。

HD の荷重-変形関係



4. 仕様

各寸法型式の仕様は以下のとおりとする。

寸法型式	HD 金物	アンカーボルト (M20)	補助部材				
り仏空八	加亚柳) 2 3 AND I (M20)	六角ボルト (M16)				
HD	JIS G 3131 SPHC 板厚 6 mm 電 気亜鉛めっき処理	ハイテンションボール JIS G 4107 SNB7 電気亜鉛めっき処理	JIS G 3507-1 SWRCH10R 電気亜鉛めっき処理				

一般社団法人 木を活かす建築推進協議会 (平成23年5月版)

HD金物図

5. 適用範囲

許容耐力および接合部倍率の適用範囲は以下のとおりとする。

	適用範囲	(参考) 本データベースの試験体
	同一等級構造用集成材	同一等級構造用集成材
樹種	おうしゅうあかまつ	おうしゅうあかまつ
	E105-F345 以上	E105 — F345
積層数	7層以上	7層
柱断面	210mm 以上	210mm
HD 金物	JIS G 3131 SPHC 板厚 6mm以上 電気亜鉛めっき処理同等 (Ep-Fe/Zn5/CM2 又は同等以上の耐食性有する 皮膜を施したもの)	JIS G 3131 SPHC 板厚 6mm 表面処理なし
アンカーボルト	ハイテンションボルト M20以上 JIS G 4117 SNB7以上 電気亜鉛めっき処理同等 (Ep-Fe/Zn5/CM2又は同等以上の耐食性有する 皮膜を施したもの)	ハイテンションホ・ルト M20 JIS G 4117 SNB7 表面処理なし
六角ボルト	M16 JIS G 3507-1 SWRCH10R 電気亜鉛めっき処理同等 (Ep-Fe/Zn5/CM2 又は同等以上の耐食性有する 皮膜を施したもの)	M16 JIS G 3507-1 SWRCH10R 電気亜鉛めっき処理

6. 許容耐力の検討

1) 試験結果に関する考察

試験を行った6体すべてにおいて、アンカーボルトが破壊箇所となった(1体はアンカーボルトねじ山の破壊)。

柱を留め付けているボルトや柱自体の損傷は見られなかった。HD 金物のアンカーボルトを抑えている部分に引張による変形が見られた。

試験体1は、アンカーボルトのねじ山が破壊した後も加力を続けたため、荷重-変形曲線において、 一度大きく荷重が落ちた後も変形が進み、荷重が上がらないところで試験を終了した。

2) 低減係数 α の算出

耐久性に関しては、試験体の金物は表面処理を行っていないが、現場では表面処理されたものが使われると思われる。

また施工に関してもアンカーボルトの設置は特殊技能を必要とせず、安定した施工が行われ、ばらつきはでないものと考える。

破壊形式がアンカーボルトで決まっているため、破壊が予測しやすい。

ただし、鋼材品質のばらつきを考慮し、低減係数 $\alpha = 0.95$ とする。

寸法型式	P _y (kN)	δ_y (mm)	2/3P _{max} (kN)	min(P _y , 2/3P _{max}) (基準耐力) (kN)	P _u (kN)	δ_{u} (mm)	K (kN/mm)	$\delta_{\rm v}$ (mm)	α	短期許容耐力 (kN)
HD	127. 2	5.6	163.8	127. 2	231.7	21.5	27. 5	8. 7	0.95	120.8

 P_y 、 $2/3P_{max}$ 、 P_u は信頼水準 75%の 95%下限値で、 δ_y 、K、 δ_v は信頼水準 75%の 50%下限値、 δ_u は最小値。 μ は平均値とした。